
CSE 8B: Introduction to Programming and
Computational Problem Solving - 2

Assignment 4
Loops, Recursion, and Arrays

Due Date: Wednesday, May 3, 11:59 PM

Learning goals:
● Getting practice with loops
● Getting practice with 1D arrays and 2D arrays
● Getting practice with recursion

NOTE: This programming assignment must be done individually.

Your grade will be determined by your most recent submission. If you submit to
Gradescope after the deadline, it will be marked late and the late penalty will apply
regardless of whether you had past submissions before the deadline.

If your code does not compile on Gradescope, you will receive an automatic zero on the
assignment.

Coding Style (10 points)
For this programming assignment, we will be enforcing the CSE 8B Coding Style
Guidelines. These guidelines can also be found on Canvas. Please ensure to have
COMPLETE file headers, class headers, and method headers, to use descriptive variable
names and proper indentation, and to avoid using magic numbers.

Part 0: Getting started with the starter code (0 points)

1. If using a personal computer, then ensure your Java software development environment

does not have any issues. If there are any issues, then review Assignment 1, or come to

the office/lab hours before you start Assignment 4.

2. First, navigate to the cse8b folder that you have created in Assignment 1 and create a

new folder titled assignment4

https://cseweb.ucsd.edu/classes/sp23/cse8B-a/styleguide.html
https://cseweb.ucsd.edu/classes/sp23/cse8B-a/styleguide.html

3. Download the starter code. You can download the starter code from Piazza →

Resources → Homework → assignment4.zip. The starter code should contain two

files: FunWithArrays.java, and RecursiveHourglass.java. Place the starter code

within the assignment4 folder that you have just created

Part 1: Implement Methods in FunWithArrays (70 points)

In class FunWithArrays of the starter code, 9 methods are already declared for you:
findRange,findAvg, arrayCopy, containsIntegerSequence, reverseArray,
differentPairs, findLargestSubarraySum, unitTests, and main. For this part of the
assignment, your task is to implement the first seven methods (findRange,findAvg,
arrayCopy, containsIntegerSequence, reverseArray, differentPairs, and
findLargestSubarraySum).

findRange (10 points):

This method takes an integer array variable, array, as the input. You must find the range of the
integers within this array where the range is defined as the minimum integer subtracted from the
maximum integer. If array is null or if the length is 0, you must return 0.

Sample:

findRange({1, 2, 3, 4, 5}) → 4

Explanation: This is because the maximum integer is 5 and the minimum integer is 1. 5 - 1 = 4.

findAvg (10 points):

This method takes an integer array variable, array, as the input. You must find the average of
the integers within this array and return the result as a double. Average is defined as the sum of
all integers divided by the number of integers. If array is null or if the length is 0, you must
return 0.

Sample:

findAvg({1, 2, 3, 4, 5}) → 3.0

Explanation: The sum of all integers is 15. The number of integers in the array is 5. 15/5 = 3.0.

arrayCopy (10 points):

This method takes an integer array variable, array, as the input. You must return a deep copy
of the array with the same contents. A deep copy of the array is defined as an array that has the
same contents but is not the same array that is stored in memory. So arr == arrCopy should
be false. If you just returned the same reference that was passed in as an argument, you will
fail the autograder test cases. If array is null, you must return null. You are not allowed to
use System.arraycopy().

Sample:

arrayCopy({1, 2, 3, 4, 5}) → {1, 2, 3, 4, 5}

containsIntegerSequence (10 points):

This method takes an integer array variable, array, as the input and must return a boolean. It
must return true if the contents of the array has exactly the integers from [0… n-1] where n is
the length of the array. Examples below will make this clearer. If array is null, you must return
false. If the length is 0, you must return true.

Sample:

containsIntegerSequence({0, 1, 3}) → false

containsIntegerSequence({3, 4, 1, 0, 2}) → true

Explanation: The first array is of length 3. Hence, the contents that should only exist in this array
are 0, 1, and 2. However, it contained 3 and not 2. Hence we return false. The second array is
of length 5. Hence, it should contain only the integers 0, 1, 2, 3, and 4. This is exactly what it
contains, so we return true.

reverseArray (10 points):

This method takes an integer array variable, array, as the input and does not return anything.
Instead, it must reverse the array that was passed in as an argument in place. If array is null,
you do not have to do anything and must simply return from the method.

Sample:

reverseArray({1, 2, 3, 4, 5}) → the same array that was passed in as an argument

should now be: {5, 4, 3, 2, 1}

Be sure that your method modifies the array that was passed in. Making a copy of the array,

reversing the copy, then assigning the variable that was passed in to the reference of the copy

would fail the autograder.

differentPairs (10 points):

This method takes in two integer 2D array variables, arr1, and arr2 as the input and returns an

2D array where every row of the 2D array is of length 2 that denotes which pairs (i, j) within arr1

and arr2 are different. If all integers in both arrays are the same, then return an empty 2D array.

Each row (pair) in the resulting 2D array should be sorted from least to greatest, prioritizing the

row index first. If the row indexes are the same, then the pair with the smaller column index

should go first in the array. Examples below will make this clearer.

Sample:

differentPairs({{-1, 0, 3}, {5, 6, 7}, {1, 2, 3}}, {{-1, 0, 3}, {2, 6, 7},

{-1, 2, 3}}) → {{1, 0}, {2, 0}}

-1 0 3

5 6 7

1 2 3

-1 0 3

2 6 7

-1 2 3

differentPairs({{1, 2, 3}}, {{1, 2, 3}}) → {}

1 2 3

1 2 3

Explanation: For the first example, note that arr1 and arr2 differ at the second row (index 1),
first column (index 0). It also differs at the third row (index 2), first column (index 0). Hence the
resulting array that is returned should be {{1, 0}, {2, 0}}. For the second example, the two
arrays are the same in contents so we return an empty 2D array.

Definition on sorting:

To clarify on the order of the pairs that you result should have, take a look at the following.

Imagine if two arrays differed at these positions:

(5, 6)

(5, 4)

(1, 2)

(6,0)

(0, 3)

Then your resulting array should look like: {{0, 3}, {1, 2}, {5, 4}, {5, 6}, {6,0}}. We
prioritize the row index first when sorting from least to greatest. Only when they are the same,
do we look at the column index for judgment. Note that you should not be using any built in Java
sorting methods and you do not even need to implement any code for sorting. Traversing the
arrays in a straightforward way will yield the correct answer.

findLargestSubarraySum (10 points)

This method takes in one integer 2D array variable, arr as the input and returns an integer that

is the maximum sum of a 2D subarray within this arr. A 2D subarray is defined as any

non-empty rectangle/square embedded within arr (including the entire arr) itself.

If arr is null, the number of rows is 0, or the number of columns is 0, you should return 0.
Examples below will make this clearer:

Samples:

-10 -20 1

-100 900 -2

1000 1 3

findLargestSubarraySum({{-10, -20, 1}, {-100, 900, -2}, {1000, 1, 3}}) →

1802

1 1 1

1 1 1

1 1 1

findLargestSubarraySum({{1, 1, 1}, {1, 1, 1}, {1, 1, 1}}) → 9

-1 -20 -20

-5 10000 -1

-1 -1 -1

findLargestSubarraySum({{-1, -20, -20}, {-5, 10000, -1}, {-1, -1, -1}}) →

10000

Explanation:

The first example, the largest sum one can obtain in any subarray from the original array, is the

rectangle highlighted in yellow. One can work out by hand to verify. -100 + 900 - 2 + 1000 + 1 +

3 = 1802.

In the second example, from the definition of a subarray, it can also be the entire original array

itself and since the array contains only positive integers, the correct answer is the sum of all the

integers in the 2D array.

A single element (square) is itself classified as a subarray and hence the answer in this case is

10000. One can verify that adding other elements would only decrease the answer.

Part 2: Implement RecursiveHourglass (10 points)

Remember the hourglass that you generated in Assignment 2? Well, this part of the assignment
is extremely similar, except that you will be generating the hourglass recursively.

Please take a look at the helper method provided called getLine that you must use in your
implementation below. This method takes in three parameters, a character c, and integer n, and
another integer numSpaces. getLine returns a String of n characters (c) with numSpaces

spaces in the front and back of the line, along with a newline character at the end. Examples will
make this clear:

getLine('@', 3, 0) → "@@@\n"

getLine('*', 5, 1) → " ***** \n"

getLine('#', 1, 2) → " # \n"

You must NOT change this method and you MUST use it in your implementation below. Though

however you use it is up to you.

recursiveHourglass (10 points):

This method takes in the three variables as parameters c, height, and numSpaces. This
method must generate the exact same structure of the hourglass in Assignment 2 based on the
parameters that are passed in. More concretely this method must generate an hourglass that is
made up of the char c with height rows. The first row starts with n cs and decreases by two
each row (one at the front and one at the end). However, the cs that were deleted must now be
replaced by space characters. When you reach the middle of a single c, the hourglass starts to
expand again with additional cs placed at the beginning and back (with the corresponding

spaces deleted). If height is less than or equal to zero or if height is not an odd number, you
must return the empty string ("").

For example, if we create an hourglass of height five with c as '*', then the result string should
be: "*****\n *** \n * \n *** \n*****\n" (where \n is the new line character). When
this string is printed out, it should look like this:

NOTE: Notice how each row has one extra space in the beginning and end until you reach the

middle of the hourglass which is just a single '*' which then starts reversing. In this example,

there are 5 rows.

IMPORTANT (Will lose points if not followed):
1. There must be the right amount of spaces before and after each row. More importantly,

a common mistake is if you forget the spaces after the asterisks and print out the string,

it may look correct in your terminal but will fail the autograder.

2. Append the newline character '\n' after the last space (if any) in every row including

the last row. Do not append anything else. Any extra characters will fail the autograder.

3. You must implement this method recursively (which means calling recursiveHourglass

within the recursiveHourglass method). We will be testing to see if your answer is correct

and if you actually made recursive calls. Hence if you use loops in any way to implement

your method, your grade for this portion of the assignment will result in a 0.

4. You must not implement or use any other helper methods to solve this problem and must

only rely on getLine() and recursiveHourglass().

Part 3: Compile, Run, and UnitTest Your Code (10 points)

In this part of the assignment, you need to implement your own test cases in the method
called unitTests for both files (FunWithArrays.java and RecursiveHourglass.java)

In the starter code, several test cases are already implemented for you. You can regard it as an

example to implement other cases. The general approach is to come up with different inputs

and manually give the expected output, then call the method with that input and compare the

result with expected output.

You are encouraged to create as many test cases as you think to be necessary to cover all the

edge cases. The unitTests method should return true only when all the test cases are

passed. Otherwise, it should return false. To get full credit for this section, for each of

your eight methods above, you should have at least 3 total test cases that cover different
situations (including the ones we have provided). In other words, you will need to create two

more tests for findRange, two more tests for findAvg, two more tests for arrayCopy, two more

tests for containsIntegerSequence, two more tests for reverseArray, two more tests for

differentPairs, two more tests for findLargestSubArraySum, and two more tests for

recursiveHourglass.

Submission

You’re almost there! Please follow the instructions below carefully and use the exact
submission format. Because we will use scripts to grade, you may receive a zero if you do

not follow the same submission format.

1. Open Gradescope and login. Then, select this course → Assignment 4.

2. Click the DRAG & DROP section and directly select the required files

FunWithArrays.java, and RecursiveHourglass.java. Drag & drop is fine. Please

make sure you do not submit a zip, just the two files in one Gradescope submission.

Make sure the names of the files are correct.

3. You can resubmit unlimited times before the due date. Your score will depend on your

final (most recent) submission, even if your former submissions have higher scores.

4. Your submission should look like the below screenshot. If you have any questions, feel

free to post on Piazza!

https://piazza.com/class/lfub26biph36sp

